skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Halfter, Svenja"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding and managing the response of marine ecosystems to human pressures including climate change requires reliable large-scale and multi-decadal information on the state of key populations. These populations include the pelagic animals that support ecosystem services including carbon export and fisheries. The use of research vessels to collect information using scientific nets and acoustics is being replaced with technologies such as autonomous moorings, gliders, and meta-genetics. Paradoxically, these newer methods sample pelagic populations at ever-smaller spatial scales, and ecological change might go undetected in the time needed to build up large-scale, long time series. These global-scale issues are epitomised by Antarctic krill (Euphausia superba), which is concentrated in rapidly warming areas, exports substantial quantities of carbon and supports an expanding fishery, but opinion is divided on how resilient their stocks are to climatic change. Based on a workshop of 137 krill experts we identify the challenges of observing climate change impacts with shifting sampling methods and suggest three tractable solutions. These are to: improve overlap and calibration of new with traditional methods; improve communication to harmonise, link and scale up the capacity of new but localised sampling programs; and expand opportunities from other research platforms and data sources, including the fishing industry. Contrasting evidence for both change and stability in krill stocks illustrates how the risks of false negative and false positive diagnoses of change are related to the temporal and spatial scale of sampling. Given the uncertainty about how krill are responding to rapid warming we recommend a shift towards a fishery management approach that prioritises monitoring of stock status and can adapt to variability and change. 
    more » « less
  2. Abstract The current United Nations Decade of Ocean Science for Sustainable Development (2021–2030; hereafter, the Decade) offers a unique opportunity and framework to globally advance ocean science and policy. Achieving meaningful progress within the Decade requires collaboration and coordination across Decade Actions (Programs, Projects, and Centres). This coordination is particularly important for the deep ocean, which remains critically under‐sampled compared to other ecosystems. Despite the limited sampling, the deep ocean accounts for over 95% of Earth's habitable space, plays a crucial role in regulating the carbon cycle and global temperatures, and supports diverse ecosystems. To collectively advance deep‐ocean science, we gathered representatives from 20 Decade Actions that focus at least partially on the deep ocean. We identified five broad themes that aim to advance deep‐ocean science in alignment with the Decade's overarching 10 Challenges: natural capital and the blue economy, biodiversity, deep‐ocean observing, best practices in data sharing, and capacity building. Within each theme, we propose concrete objectives (termed Cohesive Asks) and milestones (Targets) for the deep‐ocean community. Developing these Cohesive Asks and Targets reflects a commitment to better coordination across deep‐ocean Decade Actions. We aim to build bridges across deep‐ocean disciplines, which encompass natural science, ocean observing, policy, and capacity development. 
    more » « less